52 research outputs found

    Stress exposure alters brain mRNA expression of the genes involved in insulin signalling, an effect modified by a high fat/high fructose diet and cinnamon supplement

    Get PDF
    In occidental societies, high fat and high sugar diets often coincide with episodes of stress. The association is likely to modify brain energy control. Brain insulin signalling is rarely studied in stressed individuals consuming high fat diets. Furthermore the effects of cinnamon supplement are not known in these conditions. Therefore, we exposed rats, over a 12-week period, to a control (C) or a high fat/high fructose (HF/HFr) diet that induces peripheral insulin resistance. A cinnamon supplement (C+CN and HF/HFr +CN) was added or not. After diet exposure, one group of rats was exposed to a 30-min restraint followed by a 10-min open-field test, their combination featuring a moderate stressor, the other rats staying unstressed in their home cages. The insulin signalling in hippocampus and frontal cortex was studied through the mRNA expression of the following genes: insulin receptor (Ir), insulin receptor substrate (Irs1), glucose transporters (Glut1 and Glut3), glycogen synthase (Gys1) and their modulators, Akt1 and Pten. In C rats, stress enhanced the expression of Ir, Irs1, Glut1, Gys1 and Akt1 mRNA. In C+CN rats, stress induced an increase in Pten but a decrease in Gys1 mRNA expression. In HF/HFr rats, stress was associated with an increase in Pten mRNA expression. In HF/HFr+CN rats, stress increased Pten mRNA expression but also decreased Gys1 mRNA expression. This suggests that a single moderate stress favours energy refilling mechanisms, an effect blunted by a previous HF/HFr diet and cinnamon supplement

    Micro-connectomics: probing the organization of neuronal networks at the cellular scale.

    Get PDF
    Defining the organizational principles of neuronal networks at the cellular scale, or micro-connectomics, is a key challenge of modern neuroscience. In this Review, we focus on graph theoretical parameters of micro-connectome topology, often informed by economical principles that conceptually originated with Ramón y Cajal's conservation laws. First, we summarize results from studies in intact small organisms and in samples from larger nervous systems. We then evaluate the evidence for an economical trade-off between biological cost and functional value in the organization of neuronal networks. Various results suggest that many aspects of neuronal network organization are indeed the outcome of competition between these two fundamental selection pressures.This work was supported by the National Institute of Health Research (NIHR) Cambridge Biomedical Research Centre.This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by the Nature Publishing Group

    An inventory of basic research in temporal lobe epilepsy

    No full text
    International audienc

    In or out of synch

    No full text

    Calreticulin levels determine onset of early muscle denervation by fast motoneurons of ALS model mice.

    No full text
    Although the precise signaling mechanisms underlying the vulnerability of some sub-populations of motoneurons in ALS remain unclear, critical factors such as metallo-proteinase 9 expression, neuronal activity and endoplasmic reticulum stress have been shown to be involved. In the context of SOD1(G93A) ALS mouse model, we previously showed that a two-fold decrease in calreticulin (CRT) is occurring in the vulnerable fast motoneurons. Here, we asked to which extent the decrease in CRT levels was causative to muscle denervation and/or motoneuron degeneration. Toward this goal, a hemizygous deletion of the crt gene in SOD1(G93A) mice was generated since the complete ablation of crt is embryonic lethal. We observed that SOD1(G93A);crt(+/-) mice display increased and earlier muscle weakness and muscle denervation compared to SOD1(G93A) mice. While CRT reduction in motoneurons leads to a strong upregulation of two factors important in motoneuron dysfunction, ER stress and mTOR activation, it does not aggravate motoneuron death. Our results underline a prevalent role for CRT levels in the early phase of muscle denervation and support CRT regulation as a potential therapeutic approach

    European technology development for a reliable supply of high quality seed in blue mussel farming

    No full text
    From 2005-2007 the EU project BLUE SEED was carried out. The objectives were to secure a reliable supply of blue mussel seed and to develop techniques allowing farmers tomarket bluemussels year round. A problem blue mussel producers face is the unpredictability seed supply. The amounts of wild seed available are extremely variable fromyear to year.Areliable supply of seed from hatchery sources will allow mussel farmers to overcome this. A second problem is that recently spawned mussels cannot be sold due to insufficient meat content. Producerswill benefit greatly from a hatchery-based technique, such as triploid induction, that produces non-maturing mussels that can be marketed year round. In this project mussel farmers and sellers, a network for training and technology transfer, universities and research institutes collaborated. Attention was given to broodstock conditioning and larval rearing, production of triploid larvae and tetraploid broodstock, spat settlement and on rearing of diploid and triploid spat to seed size. In addition, the allowed costs of hatchery produced seed with conventional wild-caught seed is compared. Considering the normal 2 to 3 year production cycle for blue mussel in Europe, the focus of this 2-year project was on spat and seed production

    Acute emotional stress and high fat/high fructose diet modulate brain oxidative damage through NrF2 and uric acid in rats

    No full text
    International audienceStudies focusing on the interaction of dietary and acute emotional stress on oxidative stress in cortex frontal and in brain mitochondria are scarce. Dietary-induced insulin resistance, as observed in Western diets, has been associated with increased oxidative stress causing mitochondrial dysfunction. We hypothesized that acute emotional stress could be an aggravating factor by impacting redox status in cortex and brain mitochondria. Thus, the aim of the present study was to evaluate the combination of an insulin resistance inducing high-fat/high-fructose (HF/HFr) diet and acute emotional stress on brain oxidative stress in rats. We measured several oxidative stress parameters (carbonyls, FRAP, TBARS assays, GSH, GSSG, oxidized DNA, mRNA expression of redox proteins (Nrf2), and uric acid). The HF/HFr diet resulted in increased oxidative stress both in the brain mitochondria and in the frontal cortex and decreased expression of the Nrf2 gene. The emotional stress induced an oxidative response in plasma and in brain mitochondria of the control group. In the HF/HFr group it triggered an increase expression of the redox transcription factor Nrf2 and its downstream antioxidant genes. This suggests an improvement of the redox stress tolerance in response to an enhanced production of reactive oxygen species. Accordingly, a blunted oxidative effect on several markers was observed in plasma and brain of HF/HFr-stressed group. This was confirmed in a parallel study using lipopolysaccharide as a stress model. Beside the Nrf2 increase, the stress induced a stronger UA release in HF/HFr which could take a part in the redox stress
    corecore